-
2022-09-23 17:58:49
9962M
APM7318KC-TRL_9962M Introduction
The above is the specification of the power mos tube NCE80H12. The power mos tube NCE80H12 used in our electric vehicle controller is actually different from the low-power mos structure in the usual cmos integrated circuit.
In simple terms, the motor is driven by the output current of the MOS tube such as NCE80H12. The larger the output current (in order to prevent overcurrent from burning the MOS tube, the controller has limited current protection), the motor torque is strong and the acceleration is powerful, so MOS Tubes play a very important role in electric vehicle controllers.
APM7318KC-TRL_9962M
APM7313KC-TRL
NCE3404Y NCE3400A NCE3400 NCE30ND07AS NCE3008N.
There are three parasitic capacitance parameters in the MOS tube specification, namely: input capacitance Ciss, output capacitance Coss, and reverse transfer capacitance Crss. What do the three capacitance parameters represent in the body of the tube? How did it form? .
MOS tube 3306 product features 1. RDS(on)=7mΩ@VGS=10V 2. Lead-free green equipment 3. Low resistance switch to reduce conduction loss 4. High avalanche current.
Power MOSFETs are generally rarely used in P-channel. Since the mobility of holes is lower than that of electrons, the on-resistance of P-channel transistors is larger than that of N-channel transistors for the same channel size. . According to the two points of the conductive channel and the process of channel formation, MOS tubes can be divided into: P-channel enhancement MOS tubes, P-channel depletion MOS tubes, N-channel enhancement MOS tubes and N-channel depletion MOS tubes . Figure four types of MOSFETs and their graphical symbols.
APM7318KC-TRL_9962M
UPA1870GR
The structure of the MOSFET shown in the figure is not suitable for use in high-power applications for two reasons. On the one hand, the three electrodes of the low-power MOSFET are on one plane, the channel cannot be made very short, and the channel resistance is large. On the other hand, the conductive channel is composed of surface induced charges, and the channel current is the surface current. To increase the current capacity, it is necessary to increase the chip area. Such a structure is unlikely to achieve a large current. .
When the UDS increases to a certain value, the drain PN junction breaks down, the leakage current increases rapidly, and the curve turns upward and enters the breakdown region. Power MOSFETs are used in power conversions such as switching power supplies and inverters, and they work in two regions, the cut-off region and the breakdown region. . The full area (UDS>UGS-UT) guarded in the above three areas is the full area, also known as the constant current area or the amplification area. The breakdown region is in the region of considerable drain-source voltage UDS, and the drain current is approximately constant.
NCE3075Q NCE3015S NCE3400E NCE3065K NCE3095AK.
Another technique is to intermittently improve the structure of the MOSFET and use a straight V-groove structure. In order to avoid the problems of too small current-carrying capacity and large on-resistance of MOSFET, two techniques are generally used in high-power MOSFETs. One is to connect millions of low-power MOSFET unit cells in parallel to improve the current-carrying capacity of MOSFET. . FIG. 3 is a cross-sectional view of the structure of a V-channel MOSFET.
APM7318KC-TRL_9962M
The main functions of the lithium battery protection board are: 1 overcharge protection, 2 short circuit protection, 3 over current protection, 4 over discharge protection, 5 normal state.
NCE25TD135LT NCE15TD135LT NCE15TD120LP NCE15TD135LP NCE25TD120LP.
relevant information