-
2022-09-23 17:58:49
BYJ3632
BYJ3632_AP9920GEO Introduction
Assuming that the carriers of the conductive channel are electrons, it is called an N-channel; assuming that the carriers are holes, it is called a P-channel. According to the carrier of the conduction channel, it can be divided into N channel and P channel. A MOS tube is a semiconductor device in which unipolar carriers participate in conduction.
In simple terms, the motor is driven by the output current of the MOS tube such as NCE80H12. The larger the output current (in order to prevent overcurrent from burning the MOS tube, the controller has limited current protection), the motor torque is strong and the acceleration is powerful, so MOS Tubes play a very important role in electric vehicle controllers.
BYJ3632_AP9920GEO
BYN3695
The reason is that the on-resistance is small and it is easy to manufacture. Therefore, in the application of switching power supply and motor drive, NMOS is generally used.
NCE30H11K NCE3402B NCE30H10AK NCE2304 NCE3404.
BYS3105 BYP3105 BYJ31020A BYH31012A BYJ31012A BYP3104 BYF31010A BYP31013A BYS31010A BYH31055 .
. The conductive channel of the MOS tube can be formed during the production process or by turning on an external power supply. When the gate voltage is equal to zero, there is a channel (that is, formed during production), which is called depletion mode. When an external voltage is applied The one that forms the channel later is called the enhancement type.
BYJ3632_AP9920GEO
SQ4942EY-T1-GE3
When the low UDS separate pinch off voltage is large, the MOS tube is equivalent to a resistance, and this resistance decreases with the increase of UGS. Cut-off area (UGS). Growth slows as the conduction channel approaches pinch off. Figure 1. Drain output characteristics of MOS transistors The output characteristics of field effect transistors can be divided into four regions: variable resistance region, cut-off region, breakdown region and constant current region. Variable resistance region (UDS In this region, ID increases linearly as UDS increases.
The N-channel enhancement mode MOS transistor uses a low-doped P-type semiconductor as the substrate, and forms two heavily doped N+ regions on the substrate by a dispersed method, and then generates a very thin one on the P-type semiconductor. A silicon dioxide insulating layer, and then photolithography is used to etch away the silicon dioxide layer on the upper end of the two heavily doped N+ regions, exposing the N+ regions, and finally on the outer surface of the two N+ regions and the two between them. The surface of silicon oxide is sprayed with a layer of metal film by evaporation or sputtering. These three metal films constitute the three electrodes of the MOS tube, which are called source (S), gate (G) and drain (D) respectively. .
Another technique is to intermittently improve the structure of the MOSFET and use a straight V-groove structure. In order to avoid the problems of too small current-carrying capacity and large on-resistance of MOSFET, two techniques are generally used in high-power MOSFETs. One is to connect millions of low-power MOSFET unit cells in parallel to improve the current-carrying capacity of MOSFET. . FIG. 3 is a cross-sectional view of the structure of a V-channel MOSFET.
BYM8615 BYH8638 BYN8610A BYM8628 BYN8222 BYM31020 BYS31010 BYJ3104 BYH3105 BYP3109.
BYJ3632_AP9920GEO
The lithium battery is mainly composed of two blocks, the battery cell and the lithium battery protection board PCM.
NCE2302D NCE2302F NCE1012E NCE2302B NCE2302.
relevant information