-
2022-09-23 18:12:25
BYJ3411
BYJ3411_STM6920A & Special 30V Guide
In simple terms, the motor is driven by the output current of the MOS tube such as NCE80H12. The larger the output current (in order to prevent overcurrent from burning the MOS tube, the controller has limited current protection), the motor torque is strong and the acceleration is powerful, so MOS Tubes play a very important role in electric vehicle controllers.
Xinjie, behind this FET NCE80H12, utilizes its own technical advantages to work closely with 8-inch wafer foundries, packaging and testing foundries, and has a complete quality management system to ensure continuous product quality and stable supply.
BYJ3411_STM6920A&Special 30V
SPN9926AS8RG
BYS3105 BYP3105 BYJ31020A BYH31012A BYJ31012A BYP3104 BYF31010A BYP31013A BYS31010A BYH31055 .
NCE3019AS NCE3045G NCE3400AY NCE30ND07S NCE8601B.
Power MOSFETs are generally rarely used in P-channel. Since the mobility of holes is lower than that of electrons, the on-resistance of P-channel transistors is larger than that of N-channel transistors for the same channel size. . According to the two points of the conductive channel and the process of channel formation, MOS tubes can be divided into: P-channel enhancement MOS tubes, P-channel depletion MOS tubes, N-channel enhancement MOS tubes and N-channel depletion MOS tubes . Figure four types of MOSFETs and their graphical symbols.
BYC4322 BYM4310 BYM4322 BYM4316 BYC4312 BYM438 BYS441 BYN4458 BYE4625Z BYM4612 .
BYJ3411_STM6920A&Special 30V
SP8K24-TB
The N-channel enhancement mode MOS transistor uses a low-doped P-type semiconductor as the substrate, and forms two heavily doped N+ regions on the substrate by a dispersed method, and then generates a very thin one on the P-type semiconductor. A silicon dioxide insulating layer, and then photolithography is used to etch away the silicon dioxide layer on the upper end of the two heavily doped N+ regions, exposing the N+ regions, and finally on the outer surface of the two N+ regions and the two between them. The surface of silicon oxide is sprayed with a layer of metal film by evaporation or sputtering. These three metal films constitute the three electrodes of the MOS tube, which are called source (S), gate (G) and drain (D) respectively. .
Another technique is to intermittently improve the structure of the MOSFET and use a straight V-groove structure. In order to avoid the problems of too small current-carrying capacity and large on-resistance of MOSFET, two techniques are generally used in high-power MOSFETs. One is to connect millions of low-power MOSFET unit cells in parallel to improve the current-carrying capacity of MOSFET. . FIG. 3 is a cross-sectional view of the structure of a V-channel MOSFET.
When the UDS increases to a certain value, the drain PN junction breaks down, the leakage current increases rapidly, and the curve turns upward and enters the breakdown region. Power MOSFETs are used in power conversions such as switching power supplies and inverters, and they work in two regions, the cut-off region and the breakdown region. . The full area (UDS>UGS-UT) guarded in the above three areas is the full area, also known as the constant current area or the amplification area. The breakdown region is in the region of considerable drain-source voltage UDS, and the drain current is approximately constant.
BYN31028Z BYN31024A BYG31013A BYN31095 BYJ31040 BYM31013A BYH31015-X BYH31015 BYS31030 BYF31040
BYJ3411_STM6920A&Special 30V
NCE25TD135LT NCE15TD135LT NCE15TD120LP NCE15TD135LP NCE25TD120LP.
NCE30TD120UT NCE40TD120UT NCE40TD120VT NCE30TD120BP NCE25TD120BT.
relevant information