BYT333

  • 2022-09-23 18:12:25

BYT333

BYT333_SH8K15 Introduction

In response to this demand, Xinjie can produce N-channel trench process MOS transistors with small internal resistance and good overcurrent resistance - NCE80H12, the on-resistance of NCE80H12 is less than 6mΩ, the output current can reach 120A, and the motor torque is better , .

MOS tubes like NCE80H12 convert the DC power in the battery into AC power when the electric vehicle is running normally, thereby driving the motor to run.

BYT333_SH8K15

BYF3610

However, in terms of structure, there is a big difference between them. In order to better understand the mechanism of power MOSFET, we must first recall the mechanism of low-power FET. . The following describes the principle of the MOS transistor with the structure of an N-channel enhancement type low-power MOSFET. Working principle of power MOS tube Power MOS tube is developed from low-power MOS tube.

Power MOSFETs are generally rarely used in P-channel. Since the mobility of holes is lower than that of electrons, the on-resistance of P-channel transistors is larger than that of N-channel transistors for the same channel size. . According to the two points of the conductive channel and the process of channel formation, MOS tubes can be divided into: P-channel enhancement MOS tubes, P-channel depletion MOS tubes, N-channel enhancement MOS tubes and N-channel depletion MOS tubes . Figure four types of MOSFETs and their graphical symbols.

The reason is that the on-resistance is small and it is easy to manufacture. Therefore, in the application of switching power supply and motor drive, NMOS is generally used.

NCE30H11K NCE3402B NCE30H10AK NCE2304 NCE3404.

BYT333_SH8K15

FDW2601NZ

The N-channel enhancement mode MOS transistor uses a low-doped P-type semiconductor as the substrate, and forms two heavily doped N+ regions on the substrate by a dispersed method, and then generates a very thin one on the P-type semiconductor. A silicon dioxide insulating layer, and then photolithography is used to etch away the silicon dioxide layer on the upper end of the two heavily doped N+ regions, exposing the N+ regions, and finally on the outer surface of the two N+ regions and the two between them. The surface of silicon oxide is sprayed with a layer of metal film by evaporation or sputtering. These three metal films constitute the three electrodes of the MOS tube, which are called source (S), gate (G) and drain (D) respectively. .

NCE3075Q NCE3015S NCE3400E NCE3065K NCE3095AK.

Diffusion capacitance: When a forward voltage is applied, the non-equilibrium minority carrier concentration near the interface of the depletion layer is high, far from the non-equilibrium minority carrier concentration is low, and the concentration gradually decays from high to 0 until it reaches zero. The process of charge accumulation and release in this phenomenon is the same as that of capacitor charging and discharging, which is called diffusion capacitance. When the applied forward voltage increases, the concentration of unbalanced minority carriers increases and the concentration gradient also increases, and when the applied voltage decreases, the change is opposite.

BYP31036 BYD31010A BYD31024A BYP31017 BYS31018 BYF3104 BYH3108 BYF3109 BYM31032 BYN31333A .

BYT333_SH8K15

In the lithium battery protection board, the most important thing is to protect the chip and MOS tube.

NCE2302D NCE2302F NCE1012E NCE2302B NCE2302.

relevant information