BYS31535

  • 2022-09-23 18:12:25

BYS31535

BYS31535_DMC3025LSD Introduction

MOS tubes like NCE80H12 convert the DC power in the battery into AC power when the electric vehicle is running normally, thereby driving the motor to run.

In response to this demand, Xinjie can produce N-channel trench process MOS transistors with small internal resistance and good overcurrent resistance - NCE80H12, the on-resistance of NCE80H12 is less than 6mΩ, the output current can reach 120A, and the motor torque is better , .

BYS31535_DMC3025LSD

BYP384

Power MOSFETs are generally rarely used in P-channel. Since the mobility of holes is lower than that of electrons, the on-resistance of P-channel transistors is larger than that of N-channel transistors for the same channel size. . According to the two points of the conductive channel and the process of channel formation, MOS tubes can be divided into: P-channel enhancement MOS tubes, P-channel depletion MOS tubes, N-channel enhancement MOS tubes and N-channel depletion MOS tubes . Figure four types of MOSFETs and their graphical symbols.

MOS tube 3306 product features 1. RDS(on)=7mΩ@VGS=10V 2. Lead-free green equipment 3. Low resistance switch to reduce conduction loss 4. High avalanche current.

Barrier capacitance: In power semiconductors, when the N-type and P-type semiconductors are combined, the electrons of the N-type semiconductor will partially diffuse into the holes of the P-type semiconductor due to the concentration difference, so they will form on both sides of the junction surface. Space charge area (the electric field formed by the space charge area will resist the diffusion movement, and finally make the diffusion movement reach equilibrium);

BYS3105 BYP3105 BYJ31020A BYH31012A BYJ31012A BYP3104 BYF31010A BYP31013A BYS31010A BYH31055 .

BYS31535_DMC3025LSD

AP4226GM

Another technique is to intermittently improve the structure of the MOSFET and use a straight V-groove structure. In order to avoid the problems of too small current-carrying capacity and large on-resistance of MOSFET, two techniques are generally used in high-power MOSFETs. One is to connect millions of low-power MOSFET unit cells in parallel to improve the current-carrying capacity of MOSFET. . FIG. 3 is a cross-sectional view of the structure of a V-channel MOSFET.

The N-channel enhancement mode MOS transistor uses a low-doped P-type semiconductor as the substrate, and forms two heavily doped N+ regions on the substrate by a dispersed method, and then generates a very thin one on the P-type semiconductor. A silicon dioxide insulating layer, and then photolithography is used to etch away the silicon dioxide layer on the upper end of the two heavily doped N+ regions, exposing the N+ regions, and finally on the outer surface of the two N+ regions and the two between them. The surface of silicon oxide is sprayed with a layer of metal film by evaporation or sputtering. These three metal films constitute the three electrodes of the MOS tube, which are called source (S), gate (G) and drain (D) respectively. .

When the low UDS separate pinch off voltage is large, the MOS tube is equivalent to a resistance, and this resistance decreases with the increase of UGS. Cut-off area (UGS). Growth slows as the conduction channel approaches pinch off. Figure 1. Drain output characteristics of MOS transistors The output characteristics of field effect transistors can be divided into four regions: variable resistance region, cut-off region, breakdown region and constant current region. Variable resistance region (UDS In this region, ID increases linearly as UDS increases.

Diffusion capacitance: When a forward voltage is applied, the non-equilibrium minority carrier concentration near the interface of the depletion layer is high, far from the non-equilibrium minority carrier concentration is low, and the concentration gradually decays from high to 0 until it reaches zero. The process of charge accumulation and release in this phenomenon is the same as that of capacitor charging and discharging, which is called diffusion capacitance. When the applied forward voltage increases, the concentration of unbalanced minority carriers increases and the concentration gradient also increases, and when the applied voltage decreases, the change is opposite.

BYS31535_DMC3025LSD

NCE2302D NCE2302F NCE1012E NCE2302B NCE2302.

NCE20ND06 NCE2008N NCE2312 NCE2312A NCE8205A.

relevant information